Abstract

Using synthesized sol–gel nanoimprint resist, large-area, ordered SiO2 cylindrical and stripe photonic nanostructures with constant aspect ratio have been fabricated by a single-step soft stamp hot embossing nanoimprint. Different from the traditional hot embossing nanoimprint technique, in our imprint process, the external force applied to the soft stamp is provided just by using our hand. Since the stress can be well released, the stamp can be easily released after the hot stage cooling down. So the optical window (K9 glass) substrates with imprinted two-dimensional SiO2 cylindrical photonic nanostructures show good light diffraction property. Also, our experiment demonstrates that with the imprinted sample annealing at 200[Formula: see text]C, the density of SiO2 will be increased and the diffraction efficiency can be further enhanced. In addition, the light splitting characteristic can still keep good for a larger (6 inch) substrate, which has a certain radian. This illustrates that this nanoimprint method can be compatible with the fluctuation of the imprinted substrates. Furthermore, as the distance between two adjacent feature nanostructures is in sub-micro scale, hexagonal symmetry diffraction pattern by the cylindrical photonic structures was realized at normal incidence of monochromatic laser ([Formula: see text]532[Formula: see text]nm). The diffraction efficiency of first order is about 11.2%. Morever, the diffraction pattern and the intensity of the first diffraction order can be modulated just by changing the incident angle of the input laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.