Abstract

Here, we report the measurements of two-dimensional (2-D) spectra of the streamwise velocity ($u$) in a high-Reynolds-number turbulent boundary layer. A novel experiment employing multiple hot-wire probes was carried out at friction Reynolds numbers ranging from 2400 to 26 000. Taylor’s frozen turbulence hypothesis is used to convert temporal-spanwise information into a 2-D spatial spectrum which shows the contribution of streamwise ($\unicode[STIX]{x1D706}_{x}$) and spanwise ($\unicode[STIX]{x1D706}_{y}$) length scales to the streamwise variance at a given wall height ($z$). At low Reynolds numbers, the shape of the 2-D spectra at a constant energy level shows$\unicode[STIX]{x1D706}_{y}/z\sim (\unicode[STIX]{x1D706}_{x}/z)^{1/2}$behaviour at larger scales, which is in agreement with the existing literature at a matched Reynolds number obtained from direct numerical simulations. However, at high Reynolds numbers, it is observed that the square-root relationship tends towards a linear relationship ($\unicode[STIX]{x1D706}_{y}\sim \unicode[STIX]{x1D706}_{x}$), as required for self-similarity and predicted by the attached eddy hypothesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.