Abstract
Dielectric spectroscopy is a powerful tool for characterizing and classifying materials based on their electrical properties. In order to perform dielectric measurements on a sample with spatially varying properties, the measuring probe typically is repositioned manually on the surface of the sample for each measurement. In this paper, we present a novel technique, based on a reconfigurable multielectrode array, which facilitates the recording of measurements at various different spatial locations without physically moving the measuring electrodes. By electronically selecting one of the electrodes as the inner line and connecting the remainder of the electrodes together to form the outer line, an open-ended coaxial probe is created, which can be repositioned by simply selecting different electrode combinations; hence the name of a "traveling" coaxial probe. The geometric factor, or the cell constant, of each coaxial probe in the array was estimated from measurements on saline solutions with known electrical characteristics. In order to validate the setup for measurement of dielectric properties of biological cells, the plasma membrane capacitance and cytoplasm conductivity of yeast cells suspended in aqueous solutions were measured and compared to results from published reports. Dielectric spectroscopy imaging was carried out on tissue phantoms made of an agar gel with inclusions consisting of concentrated yeast cell suspensions. Measurements were performed on the phantoms, and the dielectric data were spatially mapped with respect to electrode location. The spatial electrical data correlated precisely with locations of yeast cell inclusions within the phantoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.