Abstract

Detecting light at the single-photon level is one of the pillars of emergent photonic technologies. This is realized through state-of-the-art superconducting detectors that offer efficient, broadband and fast response. However, the use of low T C superconducting thin films limits their operation temperature to approximately 4 K and below. Here, we demonstrate proof-of-concept nanodetectors based on exfoliated, two-dimensional cuprate superconductor Bi2Sr2CaCu2O8-δ that exhibit single-photon sensitivity at telecom wavelength at a record temperature of T = 20 K. These non-optimized devices exhibit a slow reset time and a low detection efficiency (). We realize the elusive prospect of single-photon sensitivity on a high-T C nanodetector thanks to a novel approach, combining van der Waals fabrication techniques and a non-invasive nanopatterning based on light ion irradiation. This result paves the way for broader application of single-photon technologies, relaxing the cryogenic constraints for single-photon detection at telecom wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.