Abstract

This study investigated whether expert dart players utilize hand trajectory patterns that can compensate for the inherent variability in their release timing. In this study, we compared the timing error and hand trajectory patterns of expert players with those of novices. Eight experts and eight novices each made 60 dart throws, aiming at the bull’s-eye. The movements of the dart and index finger were captured using seven 480-Hz cameras. The data were interpolated using a cubic spline function and analyzed by the millisecond. The estimated vertical errors on the dartboard were calculated as a time-series by using the state variables of the index finger (position, velocity, and direction of motion). This time-series error represents the hand trajectory pattern. Two variables assessing the performance outcome in the vertical plane and two variables related to the timing control were quantified on the basis of the time-series error. The results revealed two typical types of motor strategies in the expert group. The timing error of some experts was similar to that of novices; however, these experts had a longer window of time in which to release an accurately thrown dart. These subjects selected hand trajectory patterns that could compensate for the timing error. Other experts did not select the complementary hand trajectories, but greatly reduced their error in release timing.

Highlights

  • Throwing accurately has been an important skill in many situations, from the Stone Age to present-day sports

  • We investigated dart throwing as a typical example of an accurate throw

  • In order to reduce the variability across repeated throws, it is important that throwers reduce the variability in both the hand trajectory and release timing

Read more

Summary

Introduction

Throwing accurately has been an important skill in many situations, from the Stone Age to present-day sports. For Stone Age hunters, the ability to throw accurately might have been a requisite skill to hunt prey from long distances. The place where a thrown dart will hit is physically determined by a combination of release parameters, including the position, velocity, and direction of motion at the moment of release, assuming that both the rotation and air resistance are negligible. These parameters depend on the hand trajectory of the throwing arm and the release timing. In order to reduce the variability across repeated throws, it is important that throwers reduce the variability in both the hand trajectory and release timing

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.