Abstract

We analyze two-time correlators as the most natural characteristic of a propagating quadrature-squeezed field in the transient regime. The considered system is a parametrically driven resonator with a time-dependent drive. Using a semiclassical approach derived from the input-output theory, we develop a technique for calculation of the two-time correlators, which are directly related to fluctuations of the measured integrated signal. While in the steady state the correlators are determined by three parameters (as for the phase-space ellipse describing a squeezed state), four parameters are necessary in the transient regime. The formalism can be generalized to weakly nonlinear resonators with additional coherent drive. We focus on squeezed microwave fields relevant to the measurement of superconducting qubits; however, our formalism is also applicable to optical systems. The results can be readily verified experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.