Abstract

Abstract Printed circuit boards (PCBs), one of the most complex components of e-waste, contain different metallic and non-metallic components. Recycling of waste PCBs is an important issue, from both aspects of hazardous waste management and recovery of valuable materials. In this study, for the first time, a mechanical-physical separation method for recovery of metallic elements of waste PCBs without any chemical or/and thermal processes was introduced. Two milling stages were applied to enhance the liberation degree, followed by a physical flotation process for enrichment. Based on the elemental analysis, the total metal concentration increased by 75% after the second milling in coarser particle size classifications and ceramic components has decreased significantly. Phase identification techniques confirmed that the ceramic portion is mainly CaO+SiO2+Al2O3, which generally exist inside the boards as glass fibres. Using Fourier transform infrared spectroscopy (FTIR) spectra 3 nominees of phenoxy resin, poly vinyl acetate and vinyl chloride were suggested as the major polymer content of the crushed waste PCBs. Scanning electron microscopy (SEM) demonstrated higher degree of liberation in the higher meshes for metallic and non-metallic components but it was lower for fibre glasses. The thermal pyrolysis using infrared gas analyser proved that the most volatile substances are not simple greenhouse gases such as CO, CO2 and CH4. Eventually, beneficiation using bromoform + acetone resulted in two phases of high density (sunk) and low density (float), in which the former one was enriched in metals excluding Al and Sn, and the latter one was almost depleted from metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.