Abstract

We consider the problem of time domain (TD) channel estimation for wideband millimeter wave systems with a hybrid architecture. TD channel estimators can exploit both angular and delay domain sparsity, and can perform better than frequency domain (FD) estimators exploiting only angular domain sparsity; however, the former usually require a heavier computational load than the latter. To overcome this difficulty, we propose an efficient, two-step TD channel estimator: in the first step, an effective channel incorporated with beamforming, array responses, and pulse shaping is estimated by the least squares (LS) method; in the second, the desired channel is estimated via an orthogonal matching pursuit (OMP) algorithm. It is analytically shown that the proposed two-step method can yield the same outputs as the original single-step TD estimator when an identity pulse shaping matrix and a unitary pilot matrix are employed. The proposed algorithm is simpler to implement than the other estimators based on OMP, because its sensing matrix is block-diagonal. The simulation results demonstrate that complexity reduction of the proposed method is achieved without (or with minor) performance degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.