Abstract
Correct segmentation of handwritten Chinese characters is crucial to their successful recognition. However, due to many difficulties involved, little work has been reported in this area. In this paper, a two-stage approach is presented to segment unconstrained handwritten Chinese characters. A handwritten Chinese character string is first coarsely segmented according to the background skeleton and vertical projection after a proper image preprocessing. With several geometric features, all possible segmentation paths are evaluated by using the fuzzy decision rules learned from examples. As a result, unsuitable segmentation paths are discarded. In the fine segmentation stage that follows, the strokes that may contain segmentation points are first identified. The feature points are then extracted from candidate strokes and taken as segmentation point candidates through each of which a segmentation path may be formed. The geometric features similar to the coarse segmentation stage are used and corresponding fuzzy decision rules are generated to evaluate fine segmentation paths. Experimental results on 1000 Chinese character strings from postal mail show that our approach can achieve a reasonable good overall accuracy in segmenting unconstrained handwritten Chinese characters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.