Abstract

Recent years have witnessed the publication of many research articles regarding the contactless measurement and monitoring of heart rate signals deduced from facial video recordings. The techniques presented in these articles, such as examining the changes in the heart rate of an infant, provide a noninvasive assessment in many cases where the direct placement of any hardware equipment is undesirable. However, performing accurate measurements in cases that include noise motion artifacts still presents an obstacle to overcome. In this research article, a two-stage method for noise reduction in facial video recording is proposed. The first stage of the system consists of dividing each (30) seconds of the acquired signal into (60) partitions and then shifting each partition to the mean level before recombining them to form the estimated heart rate signal. The second stage utilizes the wavelet transform for denoising the signal obtained from the first stage. The denoised signal is compared to a reference signal acquired from a pulse oximeter, resulting in the mean bias error (0.13), root mean square error (3.41) and correlation coefficient (0.97). The proposed algorithm is applied to (33) individuals being subjected to a normal webcam for acquiring their video recording, which can easily be performed at homes, hospitals, or any other environment. Finally, it is worth noting that this noninvasive remote technique is useful for acquiring the heart signal while preserving social distancing, which is a desirable feature in the current period of COVID-19.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.