Abstract
In recent years, evolutionary algorithms have shown great advantages in the field of feature selection because of their simplicity and potential global search capability. However, most of the existing feature selection algorithms based on evolutionary computation are wrapper methods, which are computationally expensive, especially for high-dimensional biomedical data. To significantly reduce the computational cost, it is essential to study an effective evaluation method. In this paper, a two-stage improved gray wolf optimization (IGWO) algorithm for feature selection on high-dimensional data is proposed. In the first stage, a multilayer perceptron (MLP) network with group lasso regularization terms is first trained to construct an integer optimization problem using the proposed algorithm for pre-selection of features and optimization of the hidden layer structure. The dataset is compressed using the feature subset obtained in the first stage. In the second stage, a multilayer perceptron network with group lasso regularization terms is retrained using the compressed dataset, and the proposed algorithm is employed to construct the discrete optimization problem for feature selection. Meanwhile, a rapid evaluation strategy is constructed to mitigate the evaluation cost and improve the evaluation efficiency in the feature selection process. The effectiveness of the algorithm was analyzed on ten gene expression datasets. The experimental results show that the proposed algorithm not only removes almost more than 95.7% of the features in all datasets, but also has better classification accuracy on the test set. In addition, the advantages of the proposed algorithm in terms of time consumption, classification accuracy and feature subset size become more and more prominent as the dimensionality of the feature selection problem increases. This indicates that the proposed algorithm is particularly suitable for solving high-dimensional feature selection problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.