Abstract

Smullyan in [Smu61] identified the recursion theoretic essence of incompleteness results such as Gödel's first incompleteness theorem and Rosser's theorem. Smullyan (improving upon [Kle50] and [Kle52]) showed that, for sufficiently complex theories, the collection of provable formulae and the collection of refutable formulae are effectively inseparable—where formulae and their Gödel numbers are identified. This paper gives a similar treatment for proof speed-up. We say that a formal system S1is speedable over another system S0on a set of formulaeAiff, for each recursive functionh, there is a formulaαinAsuch that the length of the shortest proof ofαin S0is larger thanhof the shortest proof ofαin S1. (Here we equate the length of a proof with something like the number of characters making it up,notits number of lines.) We characterize speedability in terms of the inseparability by r.e. sets of the collection of formulae which are provable in S1but unprovable in S0from the collectionA–where again formulae and their Gödel numbers are identified. We provide precise definitions of proof length, speedability and r.e. inseparability below.We follow the terminology and notation of [Rog87] with borrowings from [Soa87]. Below,ϕis an acceptable numbering of the partial recursive functions [Rog87] andΦa (Blum) complexity measure associated withϕ[Blu67], [DW83].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.