Abstract

Evolution of agents’ dynamics of multiagent systems under consensus protocol in the face of jamming attacks is discussed, where centralized parties are able to influence the control signals of the agents. In this paper we focus on a game-theoretical approach of multiagent systems where the players have incomplete information on their opponents’ strength. We consider repeated games with both simultaneous and sequential player actions where players update their beliefs of each other over time. The effect of the players’ optimal strategies according to Bayesian Nash Equilibrium and Perfect Bayesian Equilibrium on agents’ consensus is examined. It is shown that an attacker with incomplete knowledge may fail to prevent consensus despite having sufficient resources to do so.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.