Abstract

Two-photon excitation of emissive markers with near-infrared (NIR) light is of a particular interest for imaging in biology and medicine because NIR light is relatively weakly absorbed and scattered by tissues. At the same time the mechanism of two-photon absorption allows excitation of molecules located deep inside a scattering medium. In this work we demonstrate that the two-photon excitation combined with the effect of light amplification in the stimulated emission process provides a sensitive method for detecting amyloids of different forms. We investigate the two-photon excited amplified spontaneous emission (ASE) of a fluorescent dye, coumarin 307, in the brain tissue infiltrated with various amyloid phantoms i.e. oligomers, protofibrils and mature fibrils. All these forms of amyloids can be detected by observation of ASE and determination of thresholds for light amplification. On this basis we suggest that a relatively simple extension of currently used emission-based optical spectroscopy techniques can provide key information on pathogenic amyloid structures in tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.