Abstract

We present a Silicon-based Charge-Coupled Device (Si-CCD) sensor applied as a cost-effective spectrometer for femtosecond pulse characterization in the Near Infrared region in two different configurations: two-Fourier and Czerny-Turner setups. To test the spectrometer's performance, a femtosecond Optical Parametric Oscillator with a tuning range between 1100 and 1700nm and a femtosecond Erbium-Doped Fiber Amplifier at 1582nm were employed. The nonlinear spectrometer operation is based on the Two-Photon Absorption effect generated in the Si-CCD sensor. The achieved spectrometer resolution was 0.6 ± 0.1nm with a threshold peak intensity of 2×106Wcm2. An analysis of the nonlinear response as a function of the wavelength, the response saturation, and the criteria to prevent it are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.