Abstract
Multiphoton ionization provides a clear window into the nature of electron correlations in the helium atom. In the present study, the final state energy range extends up to the region near the $N=2$ and $N=3$ ionization thresholds, where two-photon ionization proceeds via continuum intermediate states above the lowest threshold. Our calculations are performed using multichannel quantum defect theory (MQDT) and the streamlined R-matrix method. The sum and integration over all intermediate states in the two-photon ionization amplitude is evaluated using the inhomogeneous R-matrix method developed by Robicheaux and Gao. The seamless connection of that method with MQDT allows us to present high resolution spectra of the final state Rydberg resonances. Our analysis classifies the resonances above the $N=2$ threshold in terms of their group theory quantum numbers. Their dominant decay channels are found to obey the previously conjectured propensity rule far more weakly for these even parity states than was observed for the odd-parity states relevant to single photon ionization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.