Abstract

As part of the U.S. Department of Energy's (DOE's) Power Electronics and Electric Machines Program area, the DOE's National Renewable Energy Laboratory (NREL) is currently leading a national effort to develop next-generation cooling technologies for hybrid vehicle electronics. Spray cooling has been identified as a potential solution that can dissipate 150-200 W/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> while maintaining the chip temperature below 125degC. This paper explores the viability and implementation of this cooling scheme. First, commercial coolants are assessed for their suitability to this application in terms of thermal, environmental, and safety concerns and material compatibility. In this assessment, HFE-7100 is identified as the optimum coolant in all performance categories. Next, spray models are used to determine the HFE-7100 spray conditions that meet such stringent heat dissipation requirements. These findings are verified experimentally, demonstrating that spray cooling is a viable thermal management solution for hybrid vehicle electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.