Abstract

A new numerical model is developed to simulate and investigate scour beneath a vibrating pipe during the tunnel erosion stage. This study is motivated by the fact that existing numerical models are not able to properly simulate scour under a vibrating pipeline, and the underlying physical mechanisms are not well understood due to the complex fluid-structure-sediment interaction. The present model incorporates the hybrid fictitious domain-immersed boundary method into a recently developed rheology-based two-phase model. The present model is validated against published experiment results of flow beneath a vibrating pipeline near a rigid boundary and scour beneath a fixed pipe. The flow velocity at the gap and the scour profile beneath the pipe are generally well produced by the model. Subsequently, the proposed model is applied to simulate scour under a vibrating pipe with different vibration amplitudes and frequencies. Among other things, it is found that maximum pipe acceleration has a dominant effect on the underlying physics that induce scour, irrespective of the combination of the vibration amplitude and frequency. An explanation for this finding is proposed based on various quantitative simulated results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.