Abstract
The inverse Gaussian regression model (IGRM) is frequently applied in the situations, when the response variable is positively skewed and well fitted to the inverse Gaussian distribution. The maximum likelihood estimator (MLE) is generally used to estimate the unknown regression coefficients of the IGRM. The performance of the MLE method is better if the explanatory variables are uncorrelated with each other. But the presence of multicollinearity generally inflates the variance and standard error of the MLE resulting the loss of efficiency of estimates. So, for the estimation of unknown regression coefficients of the IGRM, the MLE is not a trustworthy method. To combat multicollinearity, we propose two parameter estimators (TPE) for the IGRM to improve the efficiency of estimates. Moreover, mean squared error criterion is taken into account to compare the performance of TPE with other biased estimators and MLE using Monte Carlo simulation study and a real example. Based on the results of Monte Carlo simulation study and a real example, we may suggest that the TPE based on Asar and Genç method for the IGRM is better than the other competitive estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.