Abstract

The nondegenerate two-orbital Hubbard model is studied within the dynamic mean-field theory to reveal the influence of two important factors, i.e. crystal field splitting and interorbital hopping, on orbital selective Mott transition (OSMT) and realistic compound Ca$_{2-x}$Sr$_{x}$RuO$_{4}$. A distinctive feature of the optical conductivity of the two nondegenerate bands is found in OSMT phase, where the metallic character of the wide band is indicated by a nonzero Drude peak, while the insulating narrow band has its Drude peak drop to zero in the mean time. We also find that the OSMT regime expands profoundly with the increase of interorbital hopping integrals. On the contrary, it is shown that large and negative level splitting of the two orbitals diminishes the OSMT regime completely. Applying the present findings to compound Ca$_{2-x}$Sr$_{x}$RuO$_{4}$, we demonstrate that in the doping region from $x=0.2$ to 2.0, the negative level splitting is unfavorable to the OSMT phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.