Abstract

ObjectiveThe enzyme glucose-6-phosphate dehydrogenase (G6PD) catalyses the first step in the pentose phosphate pathway, producing nicotinamide adenine dinucleotide phosphate (NADPH). NADPH plays a crucial role in preventing oxidative damage to proteins and other molecules in cells, mostly red blood cells. G6PD deficiency has an x-linked pattern of inheritance in which hemizygous males are deficient, while females may or may not be deficient depending on the number of affected alleles. We report two novel DNA variants in the G6PD gene detected in two male probands with chronic nonspherocytic hemolytic anemia (CNSHA), who were referred for hematological evaluation. MethodProbands and their relatives underwent clinical, biochemical, and molecular assessment. ResultsTwo novel DNA variants, c.995C>T and c.1226C>A, were found in this study. At the protein level, they produce the substitution of Ser332Phe and Pro409Gln, respectively. These DNA variants were analyzed in the female relatives of probands for genetic counseling. ConclusionsThe novel DNA variants were classified as class I based on the clinical, biochemical, and molecular evaluations performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.