Abstract

Instabilities associated with 2:1 and 4:1 resonances of two models for the parametric forcing of a strictly nonlinear oscillator are analyzed. The first model involves a nonlinear Mathieu equation and the second one is described by a 2 degree of freedom Hamiltonian system in which the forcing is introduced by the coupling. Using averaging with elliptic functions, the threshold of the overlapping phenomenon between the resonance bands 2:1 and 4:1 (Chirikov’s overlap criterion) is determined for both models, offering an approximation for the transition from local to global chaos. The analytical results are compared to numerical simulations obtained by examining the Poincare section of the two systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.