Abstract

Abstract. A reconstruction of hydroclimate with an annual resolution covering millennia for a geographically limited region in continental Europe significantly improves our knowledge of past climate dynamics. With the use of an extensive collection of oak ring-width series (Quercus robur and Quercus petraea) from living trees, historic timbers and subfossil alluvial wood deposits from the Main River region in southern Germany, a regional, 2000-year long, seasonally resolved hydroclimate reconstruction for the Main region has been developed. Climate-growth response analysis has been performed with daily climate records from AD 1900 onwards. To test the stability of the developed transfer function, a bootstrapped transfer function stability test (BTFS) as well as a classical calibration/verification approach have been implemented to study climate-growth model performance. Living oak trees from the Main River region show a significant sensitivity to the precipitation sum from 26 February to 6 July (spring to midsummer) during the full (r=0.49, p<0.01, N=116) and split (r=0.58, p<0.01, N=58) calibration periods. BTFS confirmed the stability of the developed transfer function. The developed precipitation reconstruction reveals high variability on a high- to mid-frequency scale during the past two millennia. Very dry spring to midsummer seasons lasting multiple years appeared in the decades AD 500/510s, 940s, 1170s, 1390s and 1160s. At the end of the AD 330s, a persistent multi-year drought with drastically reduced rainfall (with regard to 1901–2000) could be identified, which was the driest decade over the past 2000 years in this region. In the AD 550s, 1050s, 1310s and 1480s, multi-year periods with high rainfall hit the Main region. In spring to midsummer of AD 338, precipitation was reduced by ∼38 % and in AD 357 it increased by ∼39 %. The presented hydroclimate reconstruction and its comparison to other records reveal interesting insights into the hydroclimate dynamics of the geographically limited area over the Common Era, in addition to revealing noticeable temporal differences.

Highlights

  • The observed change in climate in recent decades has already impacted natural and human systems (Stocker et al, 2013)

  • At the University of Hohenheim, for example, a tree-ring archive of ancient pine (Preboreal pine chronology, PPC) and oak samples (Holocene oak chronology, HOC) spanning the entire Holocene (∼ 12 500 years; Friedrich et al, 2004) exists, which serves as a suitable archive for studies of past climate variability

  • The HOC consists of oak samples from quaternary deposits, archeological wood findings, construction timbers and living trees primarily sampled from southern Germany

Read more

Summary

Introduction

The observed change in climate in recent decades has already impacted natural and human systems (Stocker et al, 2013). Tree rings are widely used as a suitable proxy to reconstruct past climate variability and to provide information on climate fluctuations on a sub-annual basis. Changes in air temperature have been intensively investigated with temperature-sensitive tree-ring chronologies (here, we refer to Wilson et al, 2016; Anchukaitis et al, 2017 and references therein) on a regional to global scale. A comparable number of studies have investigated long-term (century to millennia) hydroclimate variability, rainfall and drought. For continental Europe, only a small number of tree-ring hydroclimate reconstructions exist which cover the entire Common Era, and very few studies address the challenge of investigation hydroclimate fluctuations before Common Era (Land et al, 2015; Büntgen et al, 2011; Pechtl and Land, 2019; Schönbein et al, 2015)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.