Abstract

We give a representation of the parity-even part of the planar two-loop six-gluon maximally helicity violating (MHV) amplitude of $\mathcal{N}=4$ super-Yang-Mills theory, in terms of loop-momentum integrals with simple dual conformal properties. We evaluate the integrals numerically in order to test directly the Anastasiou-Bern-Dixon-Kosower/Bern-Dixon-Smirnov all-loop ansatz for planar MHV amplitudes. We find that the ansatz requires an additive remainder function, in accord with previous indications from strong-coupling and Regge limits. The planar six-gluon amplitude can also be compared with the hexagonal Wilson loop computed by Drummond, Henn, Korchemsky, and Sokatchev in arXiv:0803.1466. After accounting for differing singularities and other constants independent of the kinematics, we find that the Wilson loop and MHV-amplitude remainders are identical, to within our numerical precision. This result provides nontrivial confirmation of a proposed $n$-point equivalence between Wilson loops and planar MHV amplitudes, and suggests that an additional mechanism besides dual conformal symmetry fixes their form at six points and beyond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.