Abstract

We compute the two-loop master integrals for leading-color QCD scattering amplitudes including a closed light-quark loop in tt¯H\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ t\\overline{t}H $$\\end{document} production at hadron colliders. Exploiting numerical evaluations in modular arithmetic, we construct a basis of master integrals satisfying a system of differential equations in ϵ-factorized form. We present the analytic form of the differential equations in terms of a minimal set of differential one-forms. We explore properties of the function space of analytic solutions to the differential equations in terms of iterative integrals which can be exploited for studying the analytic form of related scattering amplitudes. Finally, we solve the differential equations using generalized series expansions to numerically evaluate the master integrals in physical phase space. As the first computation of a set of two-loop seven-scale master integrals, our results provide valuable input for analytic studies of scattering amplitudes in processes involving massive particles and a large number of kinematic scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.