Abstract

This paper addresses the integrated multiobjective production planning and decomposing (P&D) problem for mineral processing. A novel multiobjective 0-1 mixed integer nonlinear programming model is presented for the simultaneous P&D problem (O-model). In order to reduce the computational cost for solving O-model, a rolling horizon-based two-level decomposition approach is proposed to separate O-model into an upper level model (H-model) and a lower level model (L-model). An interactive partition (IP) and multiobjective gradient (MO-G)-based hybrid evolutionary multiobjective (EMO) algorithm named as IG-NSGA-II/IG-SPEA2, which takes the popular NSGA-II/SPEA2 as the basic EA, is proposed to solve both H-model and L-model, where an IP technique is designed to generate the efficient feasible combinational nodes, an ideal solution technique is provided for fathoming the infeasible nodes, an improved multiobjective gradient-based operator is developed to accelerate the evolution process in each selected node, and a cut with all continuous variables is constructed to exclude the previous feasible combination if it is not desired for the decision makers (DMs). The experimental results demonstrate that the presented two-level decomposition strategy can effectively integrate both levels. Moreover, the proposed hybrid method can effectively reduce the combinatorial space so as to concentrate the computing resource on the subspace of most interest, and can generate better feasible solutions than the pure EA in the full-space under computation time limits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.