Abstract

This study presents an online motion planning algorithm for generating reference trajectories during flight phases of a planar monopedal robot to transfer the configuration of the mechanical system from a specified initial pose to a specified final one. The algorithm developed in this research is based on the reachability and optimal control formulations of a time-varying linear system with input and state constraints. A two-level control scheme is developed for asymptotic stabilisation of a desired period-one orbit during running of the robot. Within-stride controllers, including stance and flight phase controllers, are employed at the first level. The flight phase controller is a feedback law to track the reference trajectories generated by the proposed algorithm. To reduce the dimension of the full-order model of running, the stance phase controller is chosen to be a parameterised time-invariant feedback law that produces a family of two-dimensional finite-time attractive and invariant submanifolds. At the second level, the parameters of the stance phase controller are updated by an event-based update law to achieve hybrid invariance and stabilisation. To illustrate the analytical results developed for the behaviour of the closed-loop system, a detailed numerical example is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.