Abstract

When a viscous fluid partially fills a Hele-Shaw channel, and is pushed by a pressure difference, the fluid interface is unstable due to the Saffman–Taylor instability. We consider the evolution of a fluid region of finite extent, bounded between two interfaces, in the limit that the interfaces are close, that is, when the fluid region is a thin liquid filament separating two gases of different pressure. In this limit, we derive a second-order ‘thin-filament’ model that describes the normal velocity of the filament centreline, and evolution of the filament thickness, as functions of the thickness, centreline curvature and their derivatives. We show that the second-order terms in this model, that include the effect of transverse flow along the filament, are necessary to regularise the instability. Numerical simulation of the thin-filament model is shown to be in accordance with level-set computations of the complete two-interface model. Solutions ultimately evolve to form a bubble of rapidly increasing radius and decreasing thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.