Abstract

AbstractIn this article, we consider two‐grid finite element methods for solving semilinear interface problems in d space dimensions, for d = 2 or d = 3. We consider semilinear problems with discontinuous diffusion coefficients, which includes problems containing subcritical, critical, and supercritical nonlinearities. We establish basic quasioptimal a priori error estimates for Galerkin approximations. We then design a two‐grid algorithm consisting of a coarse grid solver for the original nonlinear problem, and a fine grid solver for a linearized problem. We analyze the quality of approximations generated by the algorithm and show that the coarse grid may be taken to have much larger elements than the fine grid, and yet one can still obtain approximation quality that is asymptotically as good as solving the original nonlinear problem on the fine mesh. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.