Abstract

BackgroundFractalkine (CX3CL1; FKN) is a chemokine expressed by neurons that mediates communication between neurons and microglia. By regulating microglial activity, CX3CL1 can mitigate the damaging effects of chronic microglial inflammation within the brain, a state that plays a major role in aging and neurodegeneration. CX3CL1 is present in two forms, a full-length membrane-bound form and a soluble cleaved form (sFKN), generated by a disintegrin and metalloproteinase (ADAM) 10 or 17. Levels of sFKN decrease with aging, which could lead to enhanced inflammation, deficits in synaptic remodeling, and subsequent declines in cognition. Recently, the idea that these two forms of CX3CL1 may display differential activities within the CNS has garnered increased attention, but remains unresolved.MethodsHere, we assessed the consequences of CX3CL1 knockout (CX3CL1-/-) on cognitive behavior as well as the functional rescue with the two different forms of CX3CL1 in mice. CX3CL1-/- mice were treated with adeno-associated virus (AAV) expressing either green fluorescent protein (GFP), sFKN, or an obligate membrane-bound form of CX3CL1 (mFKN) and then subjected to behavioral testing to assess cognition and motor function. Following behavioral analysis, brains were collected and analyzed for markers of neurogenesis, or prepared for electrophysiology to measure long-term potentiation (LTP) in hippocampal slices.ResultsCX3CL1−/− mice showed significant deficits in cognitive tasks for long-term memory and spatial learning and memory in addition to demonstrating enhanced basal motor performance. These alterations correlated with deficits in both hippocampal neurogenesis and LTP. Treatment of CX3CL1−/− mice with AAV-sFKN partially corrected changes in both cognitive and motor function and restored neurogenesis and LTP to levels similar to wild-type animals. Treatment with AAV-mFKN partially restored spatial learning and memory in CX3CL1−/− mice, but did not rescue long-term memory, or neurogenesis.ConclusionsThese results are the first to demonstrate that CX3CL1 knockout causes significant cognitive deficits that can be rescued by treatment with sFKN and only partially rescued with mFKN. This suggests that treatments that restore signaling of soluble forms of CX3CL1 may be a viable therapeutic option for aging and disease.

Highlights

  • Fractalkine (CX3CL1; FKN) is a chemokine expressed by neurons that mediates communication between neurons and microglia

  • Winter et al Journal of Neuroinflammation (2020) 17:157 (Continued from previous page). These results are the first to demonstrate that CX3CL1 knockout causes significant cognitive deficits that can be rescued by treatment with Soluble fractalkine (sFKN) and only partially rescued with Membrane-bound fractalkine (mFKN)

  • CX3CL1−/− mice show deficits in long-term potentiation (LTP) that are mitigated by treatment with mFKN and sFKN We have previously shown that CX3CR1−/− mice show cognitive dysfunction in hippocampal-dependent tasks that correlates with decreased LTP [13]

Read more

Summary

Introduction

Fractalkine (CX3CL1; FKN) is a chemokine expressed by neurons that mediates communication between neurons and microglia. CX3CL1-/- mice were treated with adeno-associated virus (AAV) expressing either green fluorescent protein (GFP), sFKN, or an obligate membrane-bound form of CX3CL1 (mFKN) and subjected to behavioral testing to assess cognition and motor function. Results: CX3CL1−/− mice showed significant deficits in cognitive tasks for long-term memory and spatial learning and memory in addition to demonstrating enhanced basal motor performance. These alterations correlated with deficits in both hippocampal neurogenesis and LTP. Beneficial in the short-term, when prolonged, this form of microglial activation can promote cellular stress and compromise the health of neural tissue, leading to neuronal damage, neurodegeneration, and subsequent deficits in cognitive or motor function

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.