Abstract

Two simple and low cost 2,4-di-tert-butyl-6-[(1-hydroxycyclohexylmethylimino)methyl]phenol (L1) and 2-[{(1-hydroxycyclohexyl)methylimino}methyl]phenol (L2) Schiff base sensors exhibiting selectivity for Zn(2+) in water:methanol (95:5, v/v, 10 mM HEPES) are described. L1 and L2 display an "off-on" fluorescence effect forming the L1·Zn and L2·Zn complexes, respectively. In the case of L1·Zn, the emission response is quenched by the addition of Cu(2+) forming the respective L1·Cu complex; in spite of that, the fluorescence signal can be completely restored only by the addition of tartrate anions (C4H4O6(2-)) forming again L1·Znvia the "off-on" displacement approach. However, in the case of L2·Zn no Cu(2+) interference is observed, which is a typical problem for Zn(2+) sensors. Here we describe that a very subtle structural change in the ligand during transition from the enol-imine tautomer in L1 to the keto-enamine tautomer in L2 is enough to modulate the Zn(2+)/Cu(2+) selectivity. Also, the Zn(2+)vs. Cd(2+) discrimination for L1 and L2 is proved. Moreover, we found that the interaction between both L·Zn complexes and tartrate anions completely restored the free ligands by the ligand substitution mechanism even in a more efficient association than phosphate anions. Further, a second colorimetric response channel upon addition of Fe(2+) was observed for L1 and L2. Then, TD-DFT theoretical calculations were conducted in order to study the efficiency of the sensors to give different responses in the presence of such metal ions. Finally, the L2 sensor successfully detects Zn(2+) in Jurkat cells cultured with and without Zn(2+) enriched medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.