Abstract

Time fractional diffusion-wave equations are generalizations of classical diffusion and wave equations which are used in modeling practical phenomena of diffusion and wave in fluid flow, oil strata and others. In this paper we construct two finite difference schemes to solve a class of initial-boundary value time fractional diffusion-wave equations based on its equivalent partial integro-differential equations. Under the weak smoothness conditions, we prove that our two schemes are convergent with first-order accuracy in temporal direction and second-order accuracy in spatial direction. Numerical experiments are carried out to demonstrate the theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.