Abstract
Early secreted antigenic target 6kDa (ESAT-6) and culture filtrate protein 10kDa (CFP-10) are complex proteins secreted by Mycobacteriumtuberculosis that play a major role in the pathogenesis of tuberculosis. However, studies focusing on the biological functions of ESAT-6 led to discordant results and the role of ESAT-6 remains controversial. In the present study, we aim to address a potential explanation for this discrepancy and to highlight the physiological impact of two conformational states of ESAT-6. Analysis of a recombinant form of ESAT-6 by native gel electrophoresis, size exclusion chromatography and CD spectroscopy revealed that ESAT-6 forms dimers/multimers with higher molecular weight, which disappeared under the action of the detergent amidosulfobetaine-14 (ASB), giving rise to another conformational state of the protein. NMR has further indicated that ASB-treated versus nontreated ESAT-6 adopted distinct structural forms but with no well defined tertiary structure. However, protein-protein docking analysis favored a dimeric state of ESAT-6. Interestingly, the two preparations presented opposing effects on mycobacterial infectivity, as well as macrophage survival, interferon-γ secretion and membrane pore formation. Thereafter, we generated a recombinant form of the physiological heterodimer ESAT-6/CFP-10 that ASB was also able to dissociate and which showed functions similar to those of ESAT-6 dimers/multimers. Our data suggest that, in the absence of CFP-10, the hydrophobic regions of the ESAT-6 can form dimers/multimers, mimicking the ESAT-6/CFP-10 heterodimer, whereas their dissociation generates a protein presenting entirely different activities. Overall, the present study clarifies the intriguing divergences between reports that could be attributed to the ESAT-6 oligomeric state and sheds light on its importance for a better comprehension of the physiopathology of tuberculosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.