Abstract

Plant aerial surfaces comprise a complex habitat for microorganisms, and many plant-associated bacteria, such as the pathogen Pseudomonas syringae, exhibit density-dependent survival on leaves by utilizing quorum sensing (QS). QS is often mediated by diffusible signals called N-acyl-homoserine lactones (AHLs), and P. syringae utilizes N-3-oxo-hexanoyl-dl-homoserine lactone (3OC6HSL) to control traits influencing epiphytic fitness and virulence. The P. syringae pathovar syringae B728a genome sequence revealed two putative AHL acylases, termed HacA (Psyr_1971) and HacB (Psyr_4858), which are N-terminal nucleophile hydrolases that inactivate AHLs by cleaving their amide bonds. HacA is a secreted AHL acylase that degrades only long-chain (C > or = 8) AHLs, while HacB is not secreted and degrades all tested AHLs. Targeted disruptions of hacA, hacB, and hacA and hacB together do not alter endogenous 3OC6HSL levels under the tested conditions. Surprisingly, targeted disruptions of hacA alone and hacA and hacB together confer complementable phenotypes that are very similar to autoaggregative phenotypes seen in other species. While AHL acylases might enable P. syringae B728a to degrade signals of competing species and block expression of their QS-dependent traits, these enzymes also play fundamental roles in biofilm formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.