Abstract

The two-dimensional continuous windowed Fourier transform has been shown to be effective for fringe pattern analysis in our previous work. In this paper, we first estimate the sampling intervals, using frame theory, to discretize the transform. Suitable sampling intervals are estimated as 1/x and 1/y, which is verified by simulations. Noise reduction using windowed Fourier frames is then investigated and compared with that using the orthogonal wavelet transform. Due to the coherence of its kernels and fringe patterns and its redundancy, windowed Fourier frames are able to reduce noise more effectively, which is verified by processing both simulated and experimental fringe patterns. The relative errors are reduced by half, in various simulations, from those with orthogonal wavelet filtering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.