Abstract

A two-dimensional tandem mass spectrometry (2D MS/MS) scan has been developed for the linear quadrupole ion trap. Precursor ions are mass-selectively excited using a nonlinear ac frequency sweep at constant rf voltage, while simultaneously, all product ions of the excited precursor ions are ejected from the ion trap using a broad-band waveform. The fragmentation time of the precursor ions correlates with the precursor m/z value (the first mass dimension) and also with the ejection time of the product ions, allowing the correlation between precursor and product ions. Additionally, the second mass dimension (product ions' m/z values) is recovered through fast Fourier transform of each mass spectral peak, revealing either intentionally introduced "frequency tags" or the product ion micropacket frequencies, both of which can be converted to product ion m/z through the classical Mathieu parameters, thereby revealing a product ion mass spectrum for every precursor ion without prior isolation. We demonstrate the utility of this method for analyzing a broad range of structurally related precursor ions, including chemical warfare agent simulants, fentanyls and other opioids, amphetamines, cathinones, antihistamines, and tetracyclic antidepressants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.