Abstract
A 2-D strain-based interactive failure theory is developed to predict the final failure of composite laminates subjected to multi-axial in-plane loading. The stiffness degradation of a laminate during loading is examined based on the individual failure modes of the maximum strain failure theory, and a piecewise linear incremental approach is employed to describe the nonlinear mechanical behavior of the laminate. In addition, an out-of-plane failure mode normal to the laminate is also investigated to more accurately predict the failure of multidirectional laminates. The theoretical results of the failure model presented are compared with the experimental data provided by the World-Wide Failure Exercise, and the accuracy of the model’s predictive capabilities is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.