Abstract

In this paper, two-dimensional (2-D) direction-of-arrival (DOA) estimation issue is investigated by constructing array model on moving platform. Based on the moving array model, we propose two improved three-parallel coprime arrays (TPCPAs), which utilize the redundancy in the physical structure of moving TPCPA (MTPCPA) and are able to generate the same virtual array as MTPCPA using much fewer sensors. Accordingly, higher sensor utilization is achieved by the proposed arrays, which can contribute to the increase in the number of degrees of freedom. Besides, with the proposed arrays, we also present a 2-D off-grid DOA estimation algorithm, in which the estimated 2-D angles are automatically paired without extra pairing procedure. Particularly, by utilizing the $${\ell }_{p}(0<p<1)$$ norm and majorization–minimization method jointly, the proposed algorithm solves the grid mismatch problem effectively and accordingly enhances the 2-D DOA estimation performance. Finally, numerical simulations demonstrate the effectiveness and superiority of the proposed arrays and 2-D off-grid DOA estimation algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.