Abstract
AbstractPhotocatalytic nitrogen fixation is a green method for converting N2 to NH3, but it remains a challenging task due to the lack of effective photocatalysts. Herein, a series of porous metal covalent organic polymers (MCOPs) with the integration of dinuclear rhodium(II) catalytic centers were rationally constructed for photocatalytic N2 fixation. Interestingly, the porous MCOPs had double‐layers two‐dimensional (2D) structures with the coordinated Rh(II) as the point of registry. The photocatalytic experiment showed that Rh‐TAPA with significant donor‐acceptor (D−A) features exhibited a high activity toward NH3 production with a rate of 319.8 μmol g−1 h−1. The electron transfer process, N2 adsorption and activation mechanism of RhCOPs were further investigated through comprehensive characterization, including DFT calculations and in situ characterization. This work provided a valuable insight into the photocatalytic N2 fixation process with porous materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.