Abstract

This paper demonstrates that there are alternative approaches to the magnetotelluric (MT) inverse problem solution based on different types of geoelectrical models. The traditional approach uses smooth models to describe the conductivity distribution in underground formations. In this paper, we present a new approach, based on approximating the geology by models with blocky conductivity structures. We can select one or another class of inverse models by choosing between different stabilizing functionals in the regularization method. The final decision, whose approach may be used for the specific MT data set, is made on the basis of available geological information. This paper describes a new way of stabilizing two‐dimensional MT inversion using a minimum support functional and shows the improvement that it provides over traditional methods for geoelectrical models with blocky structures. The new method is applied to MT data collected for crustal imaging in the Carrizo Plain in California and to MT data collected for mining exploration by INCO Exploration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.