Abstract

Quantitative measurements of protein orientation and secondary structure composition are of great importance for protein biotechnology applications and disease treatments, and yet, they are technically challenging for a spectroscopic study. On the basis of quantum mechanics/molecular mechanics simulations, we demonstrate that two-dimensional (2D) linear dichroism spectroscopy is capable of probing the direction of α-helix motifs in proteins. Compared to the conventional linear dichroism (LD) spectra, 2D spectra double the measurable range of orientation of secondary structures. In addition, by calculating the ratio of transverse ππ* signals to longitudinal ππ* signals in 2D spectra, we can achieve quantitative measurement of the fraction of α-helix content in a protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.