Abstract

Poly(2-(3-((2-hydroxyethyl)amino)-3-oxopropyl)ethyleneamido) (PHAOE) is an amphiphilic polypeptide. The self-assembly is significant, but the ultrafast dynamic analyses of the peptide self-assembly are exiguous and worth further exploring. In this investigation, the temporal dynamic characteristics of the aggregates and unaggregated PHAOEs are mined by the two-dimensional infrared (2D IR) spectroscopy. The homogeneous and inhomogeneous diffusion processes of the carbonyl stretching modes of the unaggregated PHAOEs are slower than those of the self-assemblies. The inhomogeneous spectral diffusion proportion of the biopolymer PHAOE in methanol is greater than that in dimethyl sulfoxide (DMSO). The solvation shells surround the aggregates and unaggregated PHAOEs in the protic solvent methanol, but there are not any solvation shells around the aggregates or unaggregated PHAOEs in the dipolar solvent DMSO. The massive hydrogen-bonded monolayer self-assembly has merely an aggregate of PHAOEs and no solvation shell in DMSO. But the hydrogen-bonded bilayer self-assembly has a self-assembled methanol shell and an interior aggregate of PHAOEs in methanol. The self-assemblies of PHAOEs motivate the methanols to self-assemble. The large delocalized amide structure results in the fast spectral diffusion of the carbonyl stretching mode.Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.