Abstract

A new and simple type of self-magnetically insulated, vacuum ion diode named “Plasma Focus Diode” has been successfully developed with a large solid angle of irradiation and low divergence angle. The diode has a pair of coaxial cylindrical electrodes similar to a Mather-type plasma focus device. Ion-current density of 1·9 kA/cm2 has been obtained on the anode surface under the experimental conditions of diode voltage ∼1·4 MV, diode current ∼180 kA, and pulse width ∼75 ns. The generated ion beam has been two-dimensionally focused (line focusing) with a focusing radius of ∼0·18 mm, giving a maximum ion current density and beam power density at the axis of ∼0·14 MA/cm2 and ∼0·18 TW/cm2, respectively. The motion of electrons in the gap has been numerically simulated by use of a newly developed particle-in-cell computer simulation code, and good agreement has been obtained between the simulation and the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.