Abstract

As a two-sided clustering and dimensionality reduction paradigm, Non-negative Matrix Tri-Factorization (NMTF) has attracted much attention in machine learning and data mining researchers due to its excellent performance and reliable theoretical support. Unlike Non-negative Matrix Factorization (NMF) methods applicable to one-sided clustering only, NMTF introduces an additional factor matrix and uses the inherent duality of data to realize the mutual promotion of sample clustering and feature clustering, thus showing great advantages in many scenarios (e.g., text co-clustering). However, the existing methods for solving NMTF usually involve intensive matrix multiplication, which is characterized by high time and space complexities, that is, there are limitations of slow convergence of the multiplicative update rules and high memory overhead. In order to solve the above problems, this paper develops a distributed parallel algorithm with a 2-dimensional data partition scheme for NMTF (i.e., PNMTF-2D). Experiments on multiple text datasets show that the proposed PNMTF-2D can substantially improve the computational efficiency of NMTF (e.g., the average iteration time is reduced by up to 99.7% on Amazon) while ensuring the effectiveness of convergence and co-clustering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.