Abstract
Two-component Poisson mixture regression is typically used to model heterogeneous count outcomes that arise from two underlying sub-populations. Furthermore, a random component can be incorporated into the linear predictor to account for the clustering data structure. However, when including random effects in both components of the mixture model, the two random effects are often assumed to be independent for simplicity. A two-component Poisson mixture regression model with bivariate random effects is proposed to deal with the correlated situation. A restricted maximum quasi-likelihood estimation procedure is provided to obtain the parameter estimates of the model. A simulation study shows both fixed effects and variance component estimates perform well under different conditions. An application to childhood gastroenteritis data demonstrates the usefulness of the proposed methodology, and suggests that neglecting the inherent correlation between random effects may lead to incorrect inferences concerning the count outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.