Abstract

A U–Ne hollow cathode discharge tube is used as a source of uranium atomic vapors as well as a photoelectron/photoion detector for carrying out two-color three-photon photoionization spectroscopy of uranium. Using the uranium excitation transition 0 cm−1 (5L60) → 16 900.38 cm−1 (7M7) at 591.5-nm laser wavelength as a first step transition and scanning the wavelength of a second laser from 558 to 568 nm, high-lying odd-parity atomic levels of uranium are studied in the energy region 34 500–34 813 cm−1. All the expected 21 odd-parity atomic levels identified by various researchers in this region are observed in a single spectrum, demonstrating the high sensitivity achieved therein. In addition to this, we have identified eight autoionization resonances of uranium starting from its odd-parity atomic level at 33 801.06 cm−1 pumped by two-photon excitation. Four out of these eight autoionization resonances are observed for the first time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.