Abstract

Duty cycle has been regarded as an efficient way for energy conserving in wireless sensor networks (WSNs). In this paper, we propose a routing protocol framework (RRAD) to achieve the quality of service (QoS) requirements in the timeliness and reliability domains efficiently for asynchronous duty-cycled sensor networks. Firstly, the concepts of the real-time relay probability and E2E reliability are introduced to assist in node forwarding operations. Secondly, we novelly exploit an active slot augmentation mechanism to reduce extra sleep latency caused by unreliable links, with which the end-to-end delay can be decreased by at least two times in experiments. Moreover, by exploiting the asynchronous waking up time in duty-cycled networks, we propose a lightweight potential forwarder discovering algorithm to offer nodes another chance to be the forwarder. Finally, we demonstrate the efficiency of the proposed RRAD protocol in terms of routing latency and reliability through comprehensive experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.