Abstract

AbstractA partition π of a set S is a collection B1, B2, …, Bk of non-empty disjoint subsets, alled blocks, of S such that $\begin{array}{} \displaystyle \bigcup _{i=1}^kB_i=S. \end{array}$ We assume that B1, B2, …, Bk are listed in canonical order; that is in increasing order of their minimal elements; so min B1 < min B2 < ⋯ < min Bk. A partition into k blocks can be represented by a word π = π1π2⋯πn, where for 1 ≤ j ≤ n, πj ∈ [k] and $\begin{array}{} \displaystyle \bigcup _{i=1}^n \{\pi_i\}=[k], \end{array}$ and πj indicates that j ∈ Bπj. The canonical representations of all set partitions of [n] are precisely the words π = π1π2⋯πn such that π1 = 1, and if i < j then the first occurrence of the letter i precedes the first occurrence of j. Such words are known as restricted growth functions. In this paper we find the number of squares of side two in the bargraph representation of the restricted growth functions of set partitions of [n]. These squares can overlap and their bases are not necessarily on the x-axis. We determine the generating function P(x, y, q) for the number of set partitions of [n] with exactly k blocks according to the number of squares of size two. From this we derive exact and asymptotic formulae for the mean number of two by two squares over all set partitions of [n].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.