Abstract

We consider a 3/4-filled, two-band discrete tight-binding Peierls-Hubbard model for an isolated chain of a halogen-bridged, mixed-valence, transition-metal linear-chain complex (HMMC or {ital MX} chain). We have employed the adiabatic approximation in which the quantum fluctuations associated with phonons are implicitly treated as an external field for the electrons, and treat electron-electron effects in the Hartree-Fock approximation. We investigate ground states as functions of the model parameters and doping-induced and photoinduced excitations---kinks, polarons, bipolarons, and excitons. Results for several experimental observables, including the lattice distortion, the excess charge and spin densities of defects, and the optical absorption, are compiled. For the ground state, we find that the bond-order-wave (BOW) portion of the one-band phase diagram is eliminated from the two-band phase diagram, in agreement with the lack of real materials in the pure BOW phase. The extent of electron-hole asymmetry and of spatial localization or delocalization of defects is explored. Two separate solitons or polarons are compared with corresponding bipolarons. We demonstrate explicitly the need to employ the two-band model for a realistic modeling of the {ital MX} systems, focusing on three specific systems: (a) highly distorted, valence-localized (strongly charge-disproportionated) PtCl, (b) moderately distorted PtBr, and (c) weakly distorted, valence-delocalizedmore » (weak charge-density wave) PtI. The compilation of results reported here constitutes a reference resource against which the rapidly expanding experimental data can be compared.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.