Abstract

Rodlike polymers with precisely defined architectures are ideal building blocks for self-assembled structures leading to novel nanometer-scale devices. We found that the living polymerization of a single isocyanide enantiomer bearing an l-alanine pendant with a long n-decyl chain simultaneously produced diastereomeric right- and left-handed helices with different molecular weights and narrow molecular weight distributions. Each single-handed, rodlike helical polymer with a controlled length and handedness isolated by a facile solvent fractionation method with acetone self-assembled to form well-defined two- and three-dimensional smectic ordering on the nanometer scale on a substrate and in a liquid crystalline state as evidenced by direct atomic force microscopic observations and X-ray diffraction measurements, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.